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Abstract 
This student research project combines open-source machine learning tools with affordable 

robotics hardware to create a usable movement system for a six-legged robot. Linking these 

two technologies includes designing a simulated 3D model and a communication interface 

that can handle the simulation data in the real world.  
Machine learning helps to optimize and streamline processes. It is a central tool in modern 

analytics, driving statistical research. One form, reinforcement learning, harnesses evolution-

ary learning to create algorithms based on repetition and constant improvement, making it 
more cost-efficient than supervised learning and suitable for many real-world problems.  

On the other hand, robotics has made astonishing advancements over the last decades. For 

example, specialized robots do the jobs of former assembly line workers, or logistics person-
nel, while legged robots can do on-premise operational work in any environment designed 

around humans. 

Joining the possibilities of two modern technologies and combining them into one workflow 
is the goal this project aims to achieve. 
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1 Introduction 
Machine learning and robotics are the two main topics this research project aims to combine. 

With the help of publically available tools, I (referring to the author) will explore the whole 

development process – from the conceptualization to the implementation and training of the 

machine learning model. 
This chapter includes an introduction to the relevant technology to ease the reader into the 

topic and a brief explanation of reinforcement learning. Additionally, I want to differentiate 

this project from the most closely related existing work. 

1.1 Robotics & bionics 

Humans should always remain the center of attention in an automated world. Researchers 

need to find out how to make the environment safer and more comfortable for humans, in-
cluding handing dangerous tasks to robots. The Encyclopedia Britannica describes robots as 
follows. 
 

„robot, any automatically operated machine that replaces human effort, though it 
may not resemble human beings in appearance or perform functions in a humanlike 
manner. By extension, robotics is the engineering discipline dealing with robot design, 
construction, and operation.“ [1] 

 

In daily business, specialized robots are used more and more in logistics and production, e.g., 
robotic arms constructing cars. Robots can take over work that is too risky, costly, or boring 

for humans. They can also collect video data from hostile and life-threatening places, e.g., 
NASA (National Aeronautics and Space Administration) uses their exploration rovers to dis-

cover the planetary surface of Mars [2]. Additionally, these autonomous robots can make 

decisions based on observations when telecommunication is unreliable.  

 
Figure 1 – Boston Dynamics’ robot Spot with a 360° camera [3]. 
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Boston Dynamics builds the commercially available robots depicted in the figure above to 

automate the progress documentation of construction sites [3]. In addition, these robots can 

be equipped with various sensors to create 3D (Three-Dimensional) maps in real-time [4], 

making their surroundings more accessible to humans.  

Robotics is a field where hardware meets embedded software. This hardware-software gap 

leads to an important question: how to program a robot to move a certain way? The answer 
is a robotic simulation, which this research project will explore. However, what movements 

should a humanoid robot do? What about an insectoid one? The following paragraphs exam-

ine a topic combining nature and technology to answer these questions. 
Bionics is the scientific field of mimicking nature in artificial systems, primarily animals and 

plants [5]. Learning from nature is essential for technology. Survival of the fittest, for example, 

leads to very effective biological algorithms for many tasks. Since most living beings on earth 
are the product of over two billion years of evolution, if someone were to design a behavioral 

algorithm for a robot, the first look should go toward living animals [6]. 

 
Figure 2 — Droplets on a lotus leaf (left) and a hydrophobic material (right) [7]. 

One can find bionic systems elsewhere too. For example, jackets and umbrellas use the Lotus 
Effect seen in the figure above, making water droplets roll off their surface, as seen in the 

figure above. Echolocation, used by bats or dolphins, inspired radar, sonar, and medical ultra-
sound. Last but not least, the (human) brain and its neurons lead to modern machine learning 
using neural networks – and once scientists lay the basis for simulating a brain, they can imi-

tate the learning of complex behaviors found in living creatures.  
This project will take advantage of two bionic approaches. First, this project will discuss how 
the six-legged robot section 2.2 Robot introduces should move based on the movement pat-

terns of six-legged insects [6]. Second, the developed model will use an artificial brain to test 
whether the result is identical or even better. While “artificial brain” sounds like science-fic-

tion, this research project will rely on current reinforcement learning technology. 
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1.2 Machine learning 

Applications of ML (Machine Learning) include predicting a particular behavior, e.g., the 

movement of stock markets [8] or shopping patterns in online shops [9]. In addition, ML 
makes it possible to teach computers an intuition for real-world problems. As a result, ML 

proves its usefulness in science, economics, health services, and logistics. 

One recent example is the victory of DeepMind’s AlphaGo over a three-time European Go 
Champion in 2015 [10]. What made AlphaGo unique is that instead of using heuristic princi-

ples and probability calculations, DeepMind shaped reinforcement learning – an approach 

allowing computers to learn independently from any human influence by trial-and-error. RL 
(Reinforcement Learning) leads to unusual solutions that some perceive as creative. For ex-

ample, AlphaGo managed to find strategies that Go players did not develop in all 3000 years 

of the game’s existence [11]. 
RL includes a simple feedback loop. Chapter 4 Reinforcement learning will describe an imple-

mentation of RL in the ML toolkit – but how does RL work in general? 

 
Figure 3 – Reinforcement learning feedback loop. 

During the loop seen in the figure above, the agent observes the state, makes a decision, and 

executes an action. Actions change the agent’s position in the environment. The new state is 

then fed back to the agent, additionally to the reward, which bases on the reward function. 
The reward teaches the agent to distinguish good from bad behavior. RL is simulated survival 

of the fittest; the evolutionary mechanism creates generations of agents that compete against 

each other – the system rewards good behavior while bad performers drop out. The best 
algorithms then get to mutate and reproduce. Ultimately, the final result depends heavily on 

the environmental model, in which the agent learns to optimize its actions. 

This research project wants to create a movement algorithm based on RL that reaches the 
efficiency of living beings.  
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1.3 Related work 

In summary, this project will attempt to solve four partial problems in the following chapters: 

• Designing a 3D model of the physical, six-legged robot, 

• using an ML framework to train a walking model via reinforcement learning, 

• programming a command API (Application Programming Interface) to send the ML model 

result to the real robot, 

• and test the movement quality between the generated model and the handmade one. 

Scientists at the ICRAE (International Conference on Robotics and Automation Engineering) 
used RL to train a six-legged robot to navigate challenging terrain and walk around obstacles. 

Their work comes closest to what this research project aims to achieve, focusing on transfer-

ring the movement from the simulation to reality. Also interesting is their approach to 

boosting training speeds by using curriculum learning – first training the simulation in an easy 

terrain that gets procedurally more challenging to navigate [12]. 

The focus on cross-topic transfer differentiates this research project from the mentioned ar-

ticle. This research will explain ML, the used robotics hardware, and the development of an 
interface – instead of focusing on a single topic. Comparing this work to the heads behind the 
ICRAE article, this project will only go briefly over the basic ML methodology without digging 

too deep through the specifics of the neural network, relying on existing technologies for RL.   
Since robotics, especially legged robots, have made considerable advancements in recent 
years, developing new movement systems is the topic of many papers [13, 14]. This research 

project will not dive too deep into developing an all-purpose movement system for robots. 
However, this project will explore the process of creating a simple, high-level movement API 
to test the results of ML-generated movements in the real world. 

Researchers at Google Brain and the University of California even transferred some parts of 
the simulated learning into the real world, including a feedback loop that measures the be-

havior of a robot using motion capture and compares the measurements with the simulation 

[15]. This loop is quite impressive; however, this project will strictly separate the simulation 
from the real world during this project. Therefore, this work will treat the beforementioned 

partial problems from the beginning of this section separately in each corresponding chapter 

– with their requirements, design process, and results.  
So, without further ado, the next chapter will describe the necessary prerequisites.  
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2 Groundwork 
This chapter shall discuss the project’s requirements before the development can begin. First, 

the chapter defines the development’s subtasks in the timeline, then describes the robot and 

its hardware components. Next, the simulation environment explains the advantages and nu-

ances of the Unity game engine and the Unity ML toolkit. Furthermore, this chapter explores 
the Arduino framework for operating the micro-controller and summarizes the project by pro-

posing an architecture including the data flow. 

2.1 Timeline 

What follows is the scope of the project. The previous chapter has established the differences 
between this research and the related work. With the partial problems in mind, the timeline 

for the separate steps looks as follows. 

 
Figure 4 – Gantt chart of the whole project's timeline. 

Initially, the project aims to set up the components and ensure they all work as intended. So, 
the tasks are to prepare the robot, send it a handcrafted algorithm, create the 3D model, and 
set up the ML toolkit. Following this spadework, the RL will take up the most significant chunk 

of the project because of the long training time between the iterations. Lastly, this project 
will evaluate the resulting algorithm, transfer it to the robot, and compare it to the hand-
crafted algorithm. The timeframe between the project’s kickoff (03.10.21) and this 

document’s submission (10.06.22) spans eight months. 
The following section describes the technology this project will use with the concept out of 

the way. 
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2.2 Robot 

The robot in this research project is an Adeept Hexapod Spider Robot kit [16]. The detailed 

instruction manual is under appendix documents/instructions. The robot consists of the fol-
lowing parts and subsystems: 

• 13 servo motors, two for each leg and one for the robot’s head, 

• an LED (Light-Emitting Diodes) module with 6 RGB (Red Green Blue) LEDs, 

• an ultrasonic distance sensor, 

• a WiFi module for remote control, 

• a six-axis motion tracking gyroscope and accelerometer, 

• an Arduino-based AdeeptPixie driver board, connecting all the components, and finally, 

• polymer, laser-cut body parts, and frame. 

 
Figure 5 – Image of the Adeept hexapod robot from the manufacturers’ website [16]. 

This document will refer to the project’s robot as ASTERISK (Adeept Six-legged Terrestrial 

Robot Kit). Most of these components will not be relevant for this project. Only the motors, 
the polymer frame, and the driver board play a role in making the robots walk. Nevertheless, 

it is interesting to think of more possible applications of the different parts. For example, in-

stead of compiling the ML results into discrete commands stored on the micro-controller, one 
could imagine controlling the robot directly over WiFi, allowing fast testing of multiple solu-

tions without reprogramming the controller. In addition, the gyroscope could help analyze if 

the simulation corresponds to the robot’s movements, like the work from the University of 
California [15]. With time in mind, these ideas are not feasible – the machine learning will 

take approximately five months to complete, which means there is little time left to optimize 

the machinery. Therefore, the project shall remain focused on the main topic of generating a 

movement algorithm using machine learning.  
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ASTERISK holds 12 servo motors that control its six legs. A servo motor rotates parts of a 

machine with high precision [17]. In addition, Adeept provides the robot kit with its own PWM 

(Pulse-Width Modulation) 9g hobby servo motors. 

 
Figure 6 – A rendered image of the Adeept AD002 Micro Servo motor [18]. 

Adeept’s servos, depicted above, work using PWM, which means they receive a 50 Hertz pulse 
and depending on the duration, the servo rotates to a given angle. Programatically and from 
within the Arduino framework, the angle is sent to the servo using the write() function, and 

the controller then converts it to the required pulse duration, e.g., 45° equals a 1 ms pulse, 
or 90° equals a 1.5 ms pulse [18]. 

Looking at the servos’ technical limitations, as discussed in section 5.1 Robot legs API, the 

read() function that returns the servo's current position is unreliable.  It is unclear why, but 

a quick test proves that the servos in ASTERISK do not return the correct values when the 

system reads the angles – writing an angle of 90° and subsequently reading the same servo’s 
angle returns the value with a margin or error of ±20°. The command interface should there-

fore save the written value into a variable. 

Another issue arose when testing the servos: one of the set’s provisioned servo motors over-
heated and broke. Luckily, Adeept added a spare servo to the kit, making ordering another 

one from their website unnecessary. Nevertheless, this incident shows that these moving 
parts are prone to break, so the user must treat them with care. So, the commands sent to 
the robot should not be too demanding or too frequent. Section 4.3 Implementation will take 

up this topic again when discussing the movement value sampling. 

It is worth noting that servo motors do not simulate a continuous, easing movement – once 
they receive the command angle, they immediately jump to the requested angle. Therefore, 

section 3.2 Physics will respect this when designing the 3D model.  

With the hardware to simulate discussed, the following section highlights feasible simulation 

frameworks. 
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2.3 Simulation 

There are many freely available, open-source frameworks for ML and RL [19], and some of 
them provide implementations for 3D simulation. One of them is the Unity Machine Learning 
Agents Toolkit (referred to as ML toolkit from now on), based on the Unity game engine. 

Game engines are tools for constructing video games but are also suitable for simulating real-
world physics [20]. Taken from the official documentation: 
 

“The Unity Machine Learning Agents Toolkit (ML-Agents) is an  
open-source project that enables games and simulations to serve  
as environments for training intelligent agents.” [21] 

 

Unity is an excellent tool for beginners and provides many resources for getting started – and 

as a result, developers use it in various industries to create interactive experiences. For ex-
ample, Unity uses Nvidia PhysX for its 3D physics simulation [22], a cutting-edge physics 

engine. In addition, the ML toolkit uses PyTorch, an open-source ML framework. 

Many well-developed technologies are at play here, making Unity a good choice for this task. 
Most importantly, Unity combined with the ML toolkit allows the power of Unity’s 3D simu-

lation to train a hexapod model to walk directly inside the game environment – it combines 
the simulation and the RL into a single platform.  
The publicly available GitHub repository of the ML toolkit has 15 examples to try out and use 

as a reference for this work’s ML agents. One of those examples, similar to what the project 

aims to achieve, is the Crawler. It is a 3D model of a quadruped which learns to walk by col-
lecting as many green cubes as possible in the given timeframe [23]. 

 
Figure 7 – Machine Learning Agents example “Crawler”. 

The ML toolkit requires a GPU (Graphics Processing Unit) because the 3D physics simulation 

affects the machine’s processing power. Also, ML requires many matrix multiplications, espe-

cially suited for GPUs. Therefore, the DHBW (Duale Hochschule Baden-Württemerg) provides 
this project a ThinkPad P52 with an NVIDIA Quadro P1000 integrated GPU [24].  
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Since the research project will not produce a monetized product, Unity’s personal license is 

sufficient. A developer needs to download UnityHub [25] and the latest editor version 

(2021.2.11f during writing) and run it on the provided laptop. 

2.4 Programming 

While developers can script in Unity using C#, most embedded systems use lower-level pro-

gramming languages to spare themselves from performance-intensive runtime environments 
[26]. For example, the hexapod’s microcontroller, the AdeeptPixie driver-board, stems from 

the Arduino community’s open-source software, relying on C++.  
 

“Arduino is an open-source electronics platform based on easy-to-use hardware and 
software. It is intended for anyone doing interactive projects.” [27] 

 

This project requires the Arduino framework to communicate with the driver board. The 
framework takes the code, compiles it to machine code according to the microcontroller's 

architecture, and reprograms the driver-board over its serial port. Additionally, open-source 

allows developers to help themselves with various existing, high-quality C++ libraries to ma-
nipulate, control, and debug their hardware. Arduino offers an IDE (Integrated Development 

Environment) for users to download these libraries, compile the code, and upload it to the 
micro-controller. 

 
Figure 8 – Screenshot from the Arduino IDE. 

On the other hand, the Arduino IDE is a bare-bones text editor. For an inexperienced C++ 

programmer, it is difficult to exploit the full potential of the programming language without 

intelligent coding assistance. Arduino’s IDE is lightweight and easy to set up but does not sup-
ply this project with the tools to efficiently use object-oriented programming. It lacks a view 

of the file hierarchy and makes it challenging to include objects from other folders. It is decent 

enough for concepts but not for big projects. 

However, there is a powerful alternative for Arduino development; JetBrains’ CLion IDE.  
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The setup for CLion is more complex than Arduino’s IDE, but the development speed increases 

using code generation, intelligent refactoring, and the visual debugger. To start programming 

the hexapod’s Arduino-based micro-controller, CLion requires an installation of PlatformIO. 

 

“PlatformIO is a cross-platform, cross-architecture, multiple frameworks,  
professional tool for embedded systems engineers and for software  
developers who write applications for embedded products.” [28] 

 

PlatformIO standardizes the interface between the coding environment and the micro-con-
troller, making it easier to compile complex projects and upload them to the hardware. Of 

course, the project does not require CLion to interact with the Arduino-based devices, but it 

makes the development easier.  

 
Figure 9 – Screenshot from JetBrains’ CLion IDE. 

Unfortunately, as chapter 5 Command interface will discuss, the code provided by Adeept is 
not of adequate quality, which means the project includes the development of a movement 
system and API to control the robot.  

To summarize all the tasks discussed previously, the following section describes the concep-
tual side of the project. 

2.5 Architecture 

Bringing data from the simulation to the robot is a challenge best described as a gap between 
the simulated model and the physical implementation. This gap originates from the subtle 

differences between a simulated environment and the real world, e.g., the legs’ friction on 

the ground, the limitations/speed of a servo, or a faulty physics simulation.  

Recreating the natural world perfectly with all its nuances is not trivial. Therefore, this project 

must address the gap carefully to produce the best test conditions. With that in mind, the 

following figure depicts a rough idea of how the data flow shall work.  
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Figure 10 – The proposed data flow architecture for the research project. 

The four <<component>> boxes represent the four partial problems of this project. First, 
using the ML toolkit, the user needs to provide a reward function – an essential topic in chap-

ter 4 Reinforcement learning. Then, the connected learning agent will generate movements 

based on the rewards. Finally, a developer needs to tweak the physics parameters to make 
the beforementioned implementation gap smaller to resemble real-world conditions. 

Once the training finishes, the system extracts the model-generated movements from the 

simulation, transforms them into a structured array within a command file, and loads them 
into the C++ API. The API then compiles the movements within the IDE and loads them into 

the driver board using its serial port, making the robot execute them in reality. 
The idea is to fully detach the machine learning (taking place inside the simulation) from the 
physical robot – only once the simulated model moves in a satisfactory way is the data trans-

ferred.  
Chapter 3 Designing a 3D model describes making a physics-based model in Unity using simple 
game objects. After that, the bulk of the ML concept, training, and results will be the topic of 

chapter 4 Reinforcement learning. Then, chapter 5 Command interface, aims to create the 
necessary C++ functions to control the robot with a hard-coded sample command file. Finally, 
the algorithm will be uploaded and tested in chapter 6 Real-world applications form a verdict. 

This structure treats each partial problem separately, and if complications should occur dur-
ing any step, the other parts of the project remain intact.  

<<component>>
Unity Machine Learning Toolkit

<<component>>
ML Model

<<component>>
Unity Editor

<<component>>
3D Hexapod Model

<<component>>
Command Interface

<<component>>
C++ Functions

<<component>>
Hexapod

<<component>>
Driver Board
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3 Designing a 3D model 
The central question of this chapter will be how to construct a 3D model of a physical robot 

in Unity. Robotic simulation is not a trivial exercise, so the following sections will discuss how 

to create a simple solution to achieve the architectural requirements.  

3.1 GameObjects 

ASTERISK is a six-legged robot with two servo motors for each leg – Figure 11 shows how the 

3D model representing the real robot looks. The model consists only of GameObjects, Uni-

ty's primary form of 3D shapes. 

  
Figure 11 – Comparison between the 3D model of ASTERISK and the real-world robot. 

The 3D model on the left side of Figure 11 does not need to resemble the robot 1:1 in favor 

of abstraction. The most crucial aspect is the 3D model's similarity with the real robot. These 
similarities include the leg distance, the number of joints, and their degrees of freedom. The 

3D model has all its joints colored red to distinguish them from the non-moving parts – they 

resemble the robot’s servo motors. The head serves no significant purpose for now. However, 

it will become helpful when section 4.2 Constraints define the ML constraints since it provides 

information on the relative rotation of the model.  

The depicted model is still a hollow husk of GameObjects with no physical properties. Fur-

thermore, several additional attributes, like the joints’ mobility and speed, are missing.  The 

following section shall discuss which of Unity’s built-in Components can recreate real-world 
ASTERISK physical properties as closely as possible. 

3.2 Physics 

Unity provides a robotics simulation toolkit [29]. However, the architecture of this project 

does not rely on the main advertised features of the robotics toolkit, including ROS (Robot 
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Operating System) integration and live monitoring. One feature from the robotics toolkit, the 

so-called ArticulationBody, could be helpful to simulate the servo motors – but at this 

stage, Unity's build-in Joints should suffice to describe the motor's characteristics. In addi-

tion, Joints can link GameObjects together in different ways. HingeJoints can simulate 

the rotations of servo motors. 

It is impossible to attach the legs as the body’s children because this makes the legs inherit 
all the body’s transform properties – including the rotation, position, and (problematically) 

the scale. Therefore, each time a HingeJoint rotates, the scaling of the leg changes because 

its relative rotation to its parent GameObject changes. Thankfully, FixedJoints can hold the 

legs onto the body without the inheritance problem. 

 
Figure 12 – Hierarchy of the Hexapod’s GameObjects and Inspector of a sample Hip Joint. 

The above figure shows the Hierarchy of the Hexapod’s GameObjects on the left side, 

starting with an empty Hexapod GameObject, including the Body, Head, and Legs on the 

same level. Each Leg consists of two HingeJoints, one for the hip and one for the knee. 

These HingeJoints are essential for the physics simulation, specifically their Spring prop-

erty (Figure 12, right side under Inspector) which holds fundamental physics properties. A 

Spring’s TargetPosition defines an angle that the GameObject wants to reach using a 

physics-based rotation. Contrary to just setting the Transform Rotation of an object, this 

does not teleport the GameObject into a particular Rotation, which means that physical 

obstacles act as they would in the real world – blocking the Leg from going any further. On 

the other hand, the Spring value indicates the force of the GameObject trying to reach its 

TargetPosition. The rest of the 3D model is equipped with Rigidbodies, further enforc-

ing the physical properties of the model. 

The following chapter shall implement an ML training model with the 3D model looking and 

behaving similarly to its real-world counterpart. 
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4 Reinforcement learning 
Using RL, this chapter will follow the training steps to make the 3D model created in the last 

chapter walk. The first section carefully designs the reward function and the training model’s 

constraints. Then comes the implementation of the ML toolkit into the 3D model’s scripts. 

Finally, this chapter will discuss the training and its results.  

4.1 Reward function 

This section will consider a crucial aspect of successful RL – the reward function. Rewards are 

the only numeric feedback the training agent gets from the system. They are the linchpin of 

the training since every action is measured relative to its impact on the total reward.  
Rewards do not need to be complex, as proven by a research paper on locomotion movement 

by DeepMind [30]. Instead, they used a simple reward function that revolves around the 
agent’s velocity along the environment’s forward axis. As a result, both the humanoid and the 
quadruped could move quickly in rich environments and avoid obstacles.  

This section considers the design of two reward functions and tests both during training. The 

first one is the simple reward function, based on the premise of DeepMind’s paper [30], only 
rewarding the forward velocity along the Z-axis. The idea of this approach is that the simula-

tion learns to walk in the best possible way on its own – no briefing concerning what makes 

“good” movement is required. Another benefit is that there are no additional sources of error 
from interactions between rewards if there is only one metric.  
 

𝑟𝑒𝑤𝑎𝑟𝑑!"#$%& = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦' Equation 1 

The second reward concept, the complex reward function, includes metrics that judge the 

movement’s quality. The central question is what qualifies “good” movement. Even if “good” 

seems subjective, there are clear guidelines grounded on the assumption that “good” is equal 
to “natural”, shaped by evolution. For this purpose, the following reward function shall con-

sider the movement of the stick insect, as analyzed in The New York Times on how a stick 

insect walks [6].  
 

𝑟𝑒𝑤𝑎𝑟𝑑()#$%&* = .
	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦'
	−𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛'
	−𝑖𝑛𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = −𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦+,- − 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛+,-,'

 Equation 2 

 

What Equation 2 takes from [6], the forward movement should be translational, meaning it 

follows a straight line without rotation [31]. Therefore, any movement that is not translational 

should be penalized, including movement along the X- and Y-axis and rotations along all three 
axes. Equation 2 summarizes those non-translational movements in an instability variable. 
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Also, the forward velocity of good locomotion should be constant, which equals an accelera-
tion of zero – so the complex reward function can penalize the model according to the 

acceleration. 

1 private void CalculateComplexReward() 
2 { 
3     // Calculate the metrics to measure locomotion quality.  
4     _velocity = _rigidbody.velocity.z; 
5     _acceleration = math.abs( 
6         (_velocity - _velocityPrevious) / Time.fixedDeltaTime); 
7     _instabilityRot = CalculateInstabilityRotation(); 
8     _instabilityPos = CalculateInstabilityPosition(); 
9     var instability = _instabilityRot + _instabilityPos; 
10  
11     // Set previous variable for the next action. 
12     _velocityPrevious = _velocity; 
13  
14     // Return the reward function’s result. 
15     return _velocity - instability - _acceleration; 
16 } 

Code Snippet 1 – Complex reward function implemented in a Unity script. (C#) 

Unity measures the velocity of each Rigidbody, which developers can access as seen in line 

4 – the object _rigidbody is a referenced Component in the Hexapod GameObject. The 

acceleration is the derivation of the velocity, which lines 5-6 calculated as the difference be-

tween the current and the previous velocity, relative to the Time.fixedDeltaTime, which 

is not dependent on the framerate. Since the instability calculation is extensive, moving it to 
other functions (lines 7-9) cleans the code. For the rest of the code, please refer to the linked 
GitHub repository [32] – the instability is calculated by measuring position and rotation dif-

ferences between measurements. Finally, the simple reward works analogously, with 
return _velocity; in line 16. 

4.2 Constraints 

A model’s constraints disallow specific behavior. However, it is not always obvious what con-

straints the model requires because it is natural for ML to create unpredictable results. 

Therefore, developers regularly add constraints during the training when the model behaves 
in displeasing ways, like bug-fixing.  

One example from this project is that during the first few iterations, the hexapod began to 

spin around the Y-axis (upward) when the training started. While there is nothing wrong with 
going through unfavorable movements during the initial training stage, it made the hexapod 

optimize forward movement by spinning. Although the complex reward function penalizes 

this behavior of excess rotation, it is still beneficial to disallow it entirely because a direct 
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forward path without detour is desirable, and any form of 180° rotation is undesirable in this 

model’s case. Constraining the spin also prevents the hexapod from trying to walk backward 

or sideways. 

The hexapod can flip on its head relatedly, rendering itself incapable of movement along any 

axis. Furthermore, it cannot stand back up when lying on its head because of the servo’s re-

strictions. Therefore, this situation should lead to the termination of the episode, as Code 
Snippet 2 describes.  

Lastly, the model needs to train moving forward in a straight line. So, the vertical plane on 

which the hexapod walks should be narrow. The model’s goal becomes to balance on the 
vertical plane, with no other direction to go but forward. 

1 // End episode with penalty when hexapod falls off   
2    the plane, turns around, or turns on its head. 
3 if (   (transform.localPosition.y < -3)  
4     || (head.transform.position.z < transform.position.z)  
5     || (lowerBody.transform.position.y  
6             > upperBody.transform.position.y))  
7     return true; 
8 return false; 

Code Snippet 2 – Boolean function summing up the model's constraints. (C#) 

Code Snippet 2 line 3 prevents the model from falling off the vertical plane. As discussed in 

section 3.1 GameObjects, the head proves practical in line 4 to check if the hexapod has 
turned to face backward. Lines 5-6 check whether the upper body plate is below the lower 
body plate (Body(Top) and Body(Bottom)in Figure 12) for the hexapod to not flip. Section 

4.3 Implementation will show in what context Code Snippet 2 goes. The training area setup 
looks like Figure 13 shows. 

 
Figure 13 – Initial training setup for multiple hexapod agents. 

Each plane is a separated training area, including one hexapod agent each. All agents in the 
scene train simultaneously and independently – the results accumulate in the end. Keep in 

mind that the Z-axis goes to the figure’s left (Hexapod’s forward), the X-axis goes from the 

back to the front (Hexapod’s left), and the Y-axis goes up. 
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4.3 Implementation 

Unity uses the standard MonoBehaviour base class for all the GameObjects. However, the 

ML toolkit requires an Agent object instead, which swaps the Update() function (executed 

once per frame) for three different methods:  

• OnEpisodeBegin() runs when the agent fails, succeeds, or when the time runs out. 

• CollectObservations(VectorSensor sensor) gets the values according to which 

the agent makes decisions – these observations can, for example, concern an object’s 
movement speed, rotation, or position.  

• OnActionReceived(ActionBuffers actions) processes the agent’s actions and 

assigns rewards. It receives the generated decisions in an array for each training step. 

The following paragraphs will inspect the agent’s functions in depth. 

1 public override void OnEpisodeBegin() 
2 { 
3     // Reset all joint angles. 
4     foreach (var joint in joints) 
5         SetSpringPosition(joint, 0); 
6      
7     // Bring spider back to the start position. 
8     var spiderTransform = transform; 
9     spiderTransform.localPosition = new Vector3(0, 0, 0); 
10     spiderTransform.rotation = Quaternion.identity; 
11      
12     // Reset velocity 
13     _rigidbody.angularVelocity = Vector3.zero; 
14     _rigidbody.velocity = Vector3.zero; 
15 } 

Code Snippet 3 – OnEpisodeBegin() running when the agent resets. (C#) 

When the hexapod agent does something that ends the episode, it resets its state. Lines 4-5 
reset the joints to neutral positions. Keep in mind that the neutral angle in the agent’s 

HingeJoints is 0°, but it resembles the 90° angle of the robot. Lines 8-10 set the position 

and rotation of the agent back to 0. Lastly, lines 13-14 reset the physics model’s velocity – this 

is important for when the agent falls off the platform and builds momentum. If the function 

did not reset the Rigidbody’s velocity, it could catapult the agents forward once the episode 

resets. 
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1 public override void CollectObservations(VectorSensor sensor) 
2 { 
3     // Joints' rotations. 
4     foreach (var joint in joints) 
5         sensor.AddObservation(joint.spring.targetPosition); 
6      
7     // Distance from the center of the plane. 
8     sensor.AddObservation(transform.localPosition.x); 
9  
10     // Rotation on the Y-axis. 
11     var bodyPositionX = upperBody.transform.position.x; 
12     var headPositionX = head.transform.position.x; 
13     sensor.AddObservation(bodyPositionX - headPositionX); 
14 } 

Code Snippet 4 – CollectObservations() receiving all metrics and joint positions. (C#) 

Observations are the information on which the model bases its decisions. Those could be, for 

example, a ray cast, simulating a distance sensor, to find obstacles.  
In this project’s case, the simulation needs to find an efficient locomotion movement algo-
rithm. Locomotion means repeating the movements and making decisions based on the 

previous leg positions. So, the observations include all 12 joints with angles (lines 4-5). In line 
8, the agent gets its X-axis position, which should help the hexapod walk straight along the Z-
axis without falling off the narrow plane. 

The hexapod’s rotation towards its left and right is not as trivial to calculate. While Unity of-
fers a Y-axis rotation in its transform API, it has a fundamental problem: within the user’s 

understanding, Unity uses Euler angles to calculate rotation, but actually, it uses quaternions 

in the background [33]. Furthermore, Euler angles are ambiguous; reading the same Y-axis 

rotation could return any two distinctive values between 0 and 180, which would only confuse 
the model. For this purpose, lines 11-13 calculate a proxy that resembles the Y-axis rotation 

based on the head’s and body’s X-axis positions relative to each other. By subtracting 

headPositionX from bodyPositionX, the model receives a value > 0 when it turns to the 
right or a value < 0 when it turns to the left.  

1 public override void OnActionReceived(ActionBuffers actions) 
2 { 
3     SetAllJoints(actions); 
4  
5     SetReward(CalculateSimpleReward()); 
6  
7     if (!ReachedConstraint(transform)) return; 
8     EndEpisode(); 
9 } 

Code Snippet 5 – OnActionReceived() executing movements, rewards, and penalties. (C#) 
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The function from Code Snippet 5 has three tasks: 

• line 3 uses the model’s decision and sets all the joint positions, 

• line 5 calculates and sets the reward based on the chosen reward function, 

• line 7 checks if the model reached any of the constraints and, if so, ends the episode. 

The ML toolkit’s DecisionRequester Component generates the required decision array 

according to the requirements. The decision array must consist of 12 discrete values (between 
0 and 90), representing the HingeJoint‘s target angles. 

OnActionReceived() takes the model’s decision after a fixed amount of academic steps.  

One academic step equals one FixedUpdate() cycle, with a sum of 50 times per second. 

The DecisionRequester includes a decision period parameter (between 1 and 20) to spec-

ify how many academic steps pass between each decision. The following equation shall set 

this parameter to 15, which means Unity calls OnActionReceived()every 300ms: 
 

∆𝑇!"#$%$&' =	
𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑎𝑐𝑎𝑑𝑒𝑚𝑖𝑐	𝑠𝑡𝑒𝑝𝑠
∗ 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑝𝑒𝑟𝑖𝑜𝑑 =

1𝑠
50

∗ 15 = 0.3𝑠 = 300𝑚𝑠 
Equation 3 

 

This frequency corresponds with the servo motor’s technical limitations since too many com-
mands lead to an overcharge of the microcontroller, as section 6.1 Power supply will 
elaborate. So, when generating the command file, the system can sample one command line 

per OnActionReceived() call from the model.  

This section concludes the scripting setup, but before the training can begin, the hyperparam-
eters still need some consideration – the predefined constants that are not trained [34]. These 

values specify the training conditions for the ML algorithm. In the ML toolkit, the hyperpa-

rameters are listed in a YAML (YAML Ain’t Markup Language) config file [35]. Optimizing 

hyperparameters is an extensive topic, but thankfully, the developers behind the ML toolkit 
provide a default configuration that shall be sufficient for this project because it includes pa-

rameters optimized for RL problems. 

The following section will use all the preparations from this chapter to run the simulation. 
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4.4 Training 

The simulation needs to try out different configurations, including the reward function and 

the physics parameters, to see whether the overall result can improve. Therefore, this section 
will begin with the standard Unity physics and the complex reward function – corresponding 

to the order in which the training units were conducted. 
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Figure 14 – Mean complex reward with standard Unity physics. 

The ML toolkit comes with an installation of TensorBoard, which automatically generates 
graphs like the line graph above. Figure 14 shows a typical learning curve: it starts with a low 
mean reward where the agent tries random actions to see what they do – and progresses 

quickly into a higher reward through the episodes. Finally, the training levels off at the turning 
point of around 2 million episodes. Keep in mind that the Y-axis scaling is insignificant since it 

depends on the size and frequency of the rewards, which are equivalent between episodes. 

At first sight, this is a decent curve that indicates that the training has reached a local opti-
mum; however, it is not entirely what one would expect. All values on the Y-axis are negative, 

which means that the agents receive high penalties and optimize for the lowest penalty. In 

the complex reward function (Equation 2), there are two variables causing penalties; instabil-

ity (undesired movements) and acceleration. So, it makes sense that the agent, trying random 

actions initially, starts with high penalties and low rewards.  

As discussed in section 4.2 Constraints, multiple, easy-to-reach constraints end an episode 

immediately. The combination of high penalties and constraints ending the episode leads to 

an unpredicted behavior – the simulation did not learn to walk; it learned the most efficient 

way to end the episode because this was the quickest way to prevent penalties. Figure 15 

sums up the model’s behavior in this training session. 
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Figure 15 – The ML model learns to somersault to end the simulation & minimize penalties. 

The figure shows a lousy result. In retrospect, combining penalties with easily reachable con-

straints is not advisable. So, there are multiple solutions to try, either changing the penalty or 

the constraints. The simulation should keep the constraints because the model always 

reaches them when committing to unwanted behavior. The complex reward function can dis-

courage the “somersault model” by penalizing the model every time it hits a constraint and 
terminates the simulation. 

M
ea

n 
Re

w
ar

d 

 

 Training Episodes 

Figure 16 – Mean complex reward with a penalty for hitting a constraint. 

This figure depicts a sobering training result – the training starts with a local optimum by ran-

dom chance, which the training cannot reach again within over 20 million episodes. Section 
4.1 Reward function mentioned that the complex reward function allows for more sources of 

errors – and training the model consumes a large portion of project time. For example, train-

ing the model for 20 million episodes takes roughly 17 hours on the available hardware. With 
a fluctuating curve like in Figure 16, the model does not look too promising, so the effort shall 

concentrate on the simple reward function – as this approach is less likely to produce disap-

pointing results due to the reduced sources of errors. 
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Figure 17 – Mean simple reward throughout 200M training episodes. 

After circa seven days of training, the model passed 200 million episodes. The curve depicted 

above looks exceedingly promising – it has a steady, linear rise from the beginning until 

around 80 million episodes, where it reaches a local optimum. At that point, it lowers the 
reward, probably in favor of a different approach. Therefore, it can reach an even higher re-
ward in total, with a steady growth between episode 100 million and the training’s 

preliminary end. As Figure 17 depicts, the mean reward is only positive because the simple 
reward function employs no negative reward penalties. 

This curve is a strong indicator that further training is advisable. However, Unity’s physics en-
gine poses an issue beyond the model’s performance and improvement ability. The 
simulation’s movements could be described as bouncy, not portraying the natural world’s 

gravity. Appendix simulation/bouncy_hexapod shows this bouncy behavior. So, the solution 
is to adjust the gravity scale. 
Scaling the gravity is necessary for the simulation to become more realistic. Up to this point, 

this work assumed the physics engine mimics a realistic behavior. The Unity community dis-
cussions forum found a feasible solution to this issue before [36]. It is necessary to fine-tune 
the simulation’s gravity scale by trail-and-error until the model’s movements look similar to 

how the robot in the real world could act – primarily, not jumping around. 
With this approach, this scenario's most realistic gravity scale is about 10x, equivalent to an 

acceleration of 9.81 ∗ 10 = 98.1	 #
!!

 (relative to Unity’s implementation of gravity and mass). 

With this configuration, the robot mostly sticks to the ground while it walks, which means the 

simulation can proceed with the following attempt to train the model. 
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Figure 18 – Mean simple reward using a high gravity during 300M episodes. 

After circa 12 days of training, the simulation reaches the 300 million episodes mark. The 

mean reward axes of Figure 17 and Figure 18 are comparable because they have the same 

reward function. However, this training records a mean reward of circa 1000 at episode 
200M, whereas the previous training only shows a reward of half as much at the same point. 

This higher value must be a coincidence in training, making this model double as efficient at 
the 200M mark as the previous one since ML is not deterministic. 
The most astounding discovery is the exponential rise of the mean reward, increasing it by 

more than 2000% between episodes 200M and 280M. Another promising sign is that the re-
ward reaches a local optimum around the 280M point, which means the model does not 
significantly improve until the end. This plateau indicates a perfect moment to stop the train-

ing for now, with the training times and the approaching deadline being the two most 
significant contributing factors. The efficiency in which the simulation moves forward is 

comprehensible in appendix simulation/300M_commands_vid, and the difference in move-

ment before the exponential reward rise in appendix simulation/200M_commands_vid. 
These videos conclude the topic of RL, and the project progresses to the next chapter about 

how to transfer the training result to the real world. 
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5 Command interface 
There is the possibility to use the code Adeept provides with the hexapod. However, it is of 

poor quality – it is tough to understand, and the source code for all the components lies within 

one large file [37]. Furthermore, it appears the developers did not care to repurpose the code. 

Therefore, this chapter will detail an object-oriented approach to the robot’s code and create 
a uniform API for the command file. 

5.1 Robot legs API 

Two components are necessary to manipulate the robot’s legs; a single Leg object consisting 

of two servos and an array of Legs that can move sequentially. 

 
Figure 19 – UML diagram of the robot’s command interface. 

Starting with the Leg, it should programmatically initiate with a neutral_angle which has 

one primary reason; to calibrate the physical legs. Although the system commands 90° to the 

servo, the robot’s leg does not stand at a perfect 90° angle – it is often necessary to adjust 
the angles manually, degree-by-degree. The calibration only needs to be done once, and the 

values can then lie in memory for the specific robot used in this research project. Initializing 

the neutral_angle also sets the current_angle to the same value. 

Furthermore,  Arduino’s built-in Servo already has some valuable methods, one of them be-

ing write(), which sets the angle for a given Servo. This project's framework’s code uses 

the native write() method and calculates the new angle relative to the current_angle. 

Finally, the function saves the resulting value into the current_angle. While there is a 

read() function inside the Servo, it is not very reliable, as discussed in 2.2 Robot, making 



5    COMMAND INTERFACE 

 

DEVELOPMENT OF A MOVEMENT SYSTEM FOR A SIX-LEGGED ROBOT BASED ON MACHINE LEARNING  25 

current_angle the single version of truth [38] or the only reliable source of the angles’ 

positions. 

10 /* @param absolute_angle: New angle of the Servo. 
11  * @param knee_or_hip: Select the Servo of a leg,  
12  *         e.g., knee = ‘k’ or hip = ‘h’. 
13  */ 
14 void write(int absolute_angle, char knee_or_hip)  
15 { 
16     switch (knee_or_hip)  
17     { 
18         case ‘h’: 
19             this->current_hip_angle  
20              = absolute_angle - 90 + this->neutral_hip_angle; 
21             this->hip.write(this->current_hip_angle); 
22             break; 
23         case ‘k’: 
24             this->current_knee_angle  
25              = absolute_angle - 90 + this->neutral_knee_angle; 
26             this->knee.write(this->current_knee_angle); 
27             break; 
28         default: 
29             return; 
30     } 
31 } 

Code Snippet 6 – Leg.write() method that changes the angle of a Leg’s Servo. (C++) 

The Legs object consists of all six of the ASTERISK’s legs. The critical method is 
execute_command_list(), implementing a loop of execute_command() calls to make 

the robot move according to a structured array. 

1 /* @param command_list: 2D array consisting of commands,  
2  *         including info on delay time and 12 servo angles. 
3  * @param amount_of_commands: Integer that describes how many  
4  *         commands are in the command_list. 
5  */ 
6 void execute_command_list(int command_list[][13],  
7                           int amount_of_commands)  
8 { 
9     for (int command_index = 0;  
10          command_index < amount_of_commands;  
11          command_index++)  
12     { 
13         execute_command(command_list[command_index]); 
14     } 
15 } 

Code Snippet 7 – Legs.execute_command_list() method that updates all Servos. (C++) 

The following section concerns the shape for the input to execute_command(). 
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5.2 Command file 

Section 2.5 Architecture has mentioned the structured input arrays, so this section shall de-

fine their precise structure. First, consider G-Code – a widespread command control for 
automated machine tools [39], e.g., robotic manufacturing arms, to tell their motors what to 

do. It is a text file including one command and an array of parameters for each line. 

Commands for the robot are always the same in this case, making the explicit declaration of 
one unnecessary. It is interesting how a developer could manipulate the robot’s hardware 

(including its RGB LEDs or the Sensors, for instance), but this is out of scope for this research 

project, as section 2.2 Robot has established. So, the lines of this project’s file will only need 
an assortment of parameters. 

1 300, 120, 90,  60, 90, 120, 90, 120,  90,  60,  90, 120,  90 
2 300, 120, 90,  60, 60, 120, 90, 120, 120,  60,  90, 120, 120 
3 300,  60, 90, 120, 60,  60, 90,  60, 120, 120,  90,  60, 120 
4 300,  60, 90, 120, 90,  60, 90,  60,  90, 120,  90,  60,  90 
5 300,  60, 60, 120, 90,  60, 60,  60,  90, 120, 120,  60,  90 
6 300, 120, 60,  60, 90, 120, 60, 120,  90,  60, 120, 120,  90 

Code Snippet 8 – Example command file for taking one step forward. (TXT) 

This table shows an array of six consecutive commands, forming a single step of the regular 
tripod gait of an insect. Each line includes 13 parameters, the first being a delay in millisec-
onds, followed by one angle for each Servo of ASTERISK’s 12 servos. Chapter 6 Real-world 

applications shall use this algorithm inspired by nature [40] against the ML-generated algo-
rithm. 

1 /* @param commands: Array of 13 integer values. Delay at index  
2  *                  0, absolute servo angles at index 1 to 12. 
3  */ 
4 void execute_command(int commands[13]) { 
5     delay(commands[0]); 
6  
7     leg_left_front.write(commands[1], 'h'); 
8     leg_left_front.write(commands[2], 'k'); 
9     leg_left_middle.write(commands[3], 'h'); 
10     leg_left_middle.write(commands[4], 'k'); 
11     leg_left_back.write(commands[5], 'h'); 
12     leg_left_back.write(commands[6], 'k'); 
13  
14     leg_right_front.write(commands[7], 'h'); 
15     leg_right_front.write(commands[8], 'k'); 
16     leg_right_middle.write(commands[9], 'h'); 
17     leg_right_middle.write(commands[10], 'k'); 
18     leg_right_back.write(commands[11], 'h'); 
19     leg_right_back.write(commands[12], 'k'); 
20 } 

Code Snippet 9 – Legs.execute_command() method to set all legs’ Servos once. (C++) 
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The Legs.execute_command() function moves the legs on the left side, then the legs on 

the right side, from front to back, always the hip Servo first, and then the knee Servo. 
Look at Legs.execute_command_list() with  Code Snippet 8 as an input to further ana-

lyze what happens. First, when executing a command, the delay() blocks any other 

command to the driver board for the duration of the first entry of the structured array in 

milliseconds. Then, each Servo of each Leg is set in order, going through the parameters. 

Finally, the execution repeats for each line separately.  
The first line 300,120,90,60,90,120,90,120,90,60,90,120,90 translates to: 

 

Wait for 0.3 seconds, then move the left-front, left-back, and right-middle legs forward 
by 30°, and the left-middle, right-front, and right-back legs backward by 30° while 
leaving all knee joints in a 90° neutral position. 

 

This command interface proves to be very powerful for developers once they get used to it 
because it allows them to design movements based on precise angles quickly. 
Using Leg.execute_command(), the neutralize() method is just a single command, 

with a delay of 0 ms, setting all the Servos to an angle of 90° simultaneously. 

     
Figure 20 – ASTERISK in its neutral position (all servos in 90°). 

Successfully executing the neutralize() command (and making ASTERISK walk and per-
form a cute dance for testing purposes) proves G-Code as a command control. The following 

section will take the ML model from the previous chapter and extract the movement by sam-

pling the ML model’s decisions. 
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5.3 Generating a command file 

The system must first extract the command file from the movements Unity generates. The 

initial plan was to measure the rotations of the HingeJoints by sampling them, but there 
is a more practical way. The system can write each decision array the ML model generates 

into a file while the simulation walks. Consider the following code snippet. 

1 private void WriteToCommandFile(ActionBuffers actions) 
2 { 
3     var delay = 1000 / 50 * _decisionRequester.DecisionPeriod; 
4     var command = delay.ToString(); 
5  
6     foreach (int action in actions.DiscreteActions) 
7         command += ", " + (action + 45);     
8  
9     using var writer  
10         = File.AppendText("Assets/CommandFiles/CommandFile"  
11                           + _commandFileIndex + ".txt"); 
12  
13     writer.WriteLine("{" + command + "},"); 
14 } 

Code Snippet 10 – Command file API sampling the simulations movement. (C#) 

The above code snippet executes each OnActionReceived() loop every 300 ms, as Equa-
tion 3 has established. This frequency is automatically calculated depending on the 

DecisionPeriod in line 3. Line 4 saves the resulting delay in the command line variable. 

Then the actions are iterated and written into the string in lines 6-7; here, the order in which 

the system writes the values to the file matters, as the robot expects a specifically structured 

array. Therefore, the 3D model’s HingeJoints need to attach to the actions array in the 

same order as the servos connect to the microcontroller. Finally, lines 9-11 create a new com-

mand text file, and line 13 appends the string.  

The next chapter will load the sample file from appendix simulation/300M_commands into 

the robot using the robot’s serial port. 
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6 Real-world applications 
Creating the command line interface was the first step in transferring an algorithm to the 

physical robot. After training an algorithm, this chapter will showcase how the robot performs 

compared to the 3D simulation. This chapter will discuss the hardware limitations, the exper-

iment conditions, and the differences between the robot’s and the simulation’s movements. 

6.1 Power supply 

ASTERISK runs on a pair of rechargeable batteries, each providing a maximum voltage of 3.7V. 

Using a multimeter, the measured voltage of one battery after charging is around 3.4V, re-

sulting in a total voltage of circa 7V. However, since the driver board runs on 6V, both 
batteries barely provide the necessary charge and fail to do so for an extended period. This 

lack of power is an issue; neither moving the servos nor uploading code is possible with a 
voltage below 6V. Furthermore, since the batteries drop in voltage very quickly, using them 
in development would involve countless recharging. An LPS (Laboratory Power Supply), which 

lets a developer adjust voltage and electrical current, would solve this problem. Nevertheless, 

this project runs on a budget of nearly zero, and a decent LPS can be expensive, so the fol-
lowing paragraph describes building a makeshift one. 

 
Figure 21 – Components for building a makeshift laboratory power supply. 

The parts can be bought online and include: 
1. a 24W (12V, 2A) DC (Direct Current) power adapter, 
2. a standard DC plug to single wire adapter, 

3. four jumper cables, with and without crocodile clips, 
4. a DC-DC voltage converter 
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After assembling the LPS, it is hooked up to a power socket and, using the crocodile clips, the 

battery slot’s connectors. 

 
Figure 22 – An assembled robot with a built-in laboratory power supply. 

The figure above shows the fully assembled hexapod. The makeshift LPS works but is some-

what unreliable since the crocodile clips are prone to slip off their connectors. However, a 
closer look at the instructions proves that the voltage converter is unnecessary. 

 
Figure 23 — AdeeptPixie driver board overview [16] 

On the left side, Figure 23 shows Vin (6-24V DC), which means the board can withstand an 

input voltage of up to 24V and requires at least 6V to function. The power adapter has an 
output voltage of 12V and is ideally suited for a direct connection. 

The system no longer requires the voltage converter, but it is also impossible to connect the 

crocodile clips directly to the driver board. So, the idea is to take a battery connector where 

the crocodile clips can connect instead and solder it directly to the driver board’s Vin pins. 
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Figure 24 — Battery connector soldered directly on the AdeeptPixie. 

With this layout, ASTERISK is noticeably less bulky. Furthermore, using the DC plug to single 
wire adapter on the connection between the power adapter and the jumper cables, one can 

quickly (un-)plug the robot from the power supply. This setup achieved the goal, and  

ASTERISK will have a constant power supply without any battery fluctuations. However, it is 
now also restricted by cable, which should not be an issue within the topic of this project. 

With the power supply in place, the upload should work as intended. By adding the command 

file generated by the ML model to the code, PlattformIO attempts to upload the new com-
mand through the serial port. 

1 Configuring upload protocol... 
2 AVAILABLE: Arduino 
3 CURRENT: upload_protocol = arduino 
4 Looking for upload port... 
5 =============== [FAILED] Took 1.09 seconds =============== 
6  
7 Process finished with exit code 1 

Code Snippet 11 – Terminal output of a failed upload using PlattformIO. 

Unfortunately, the upload to the robot fails when it is using its servos, producing the above 

error message. The reason for the error is an overcharge caused by the driver board being 
unable to handle sending pulse signals to the servos and receiving an upload at the same time. 

This upload blockage means the system cannot upload new commands to the robot, but it 

also means that faulty commands will damage the servos for as long as one turns the power 

off. The main issue is that the board cannot receive signals when powered off. 
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Still, there is a way to reset and reupload data to the driver board. One needs to unplug all 

the servos, power on the board – which now is not overcharged by the servo motors – and 

upload the new code. 

 
Figure 25 – AdeeptPixie diver board servo pins and labeled servo connectors. 

It is beneficial to tape the servo connectors in four-packs and label them to limit the work 

necessary to replug them into the driver board after each reset. In the case of the figure 
above, the labels indicate the index of the first pin. The packs plug into the pins D2-D5, D6-
D9, and D10-D13. Additionally, the pins plug in the same order as iterated through in the 

simulation’s 3D model in Code Snippet 9, front to back, left to right. 
Please note that the driver board’s connectors should never change while the board is run-
ning. So before connecting the servos to their pins, one needs to turn the power supply off 

and disconnect the serial port connection. 
Now that PlattformIO loaded the command file into the driver board using the code from the 

second GitHub repository [41], the following section examines the robot’s movements in the 
real world. 

6.2 Experiment setup & results 

This section shall consider three different floor surfaces with varying attributes to give the 
algorithms a chance to show their potential in different environments. All of the grounds de-

picted below have various properties. For example, the cushion has high friction but gives in 

to the robot’s weight, making it challenging to walk on. On the other hand, the hardwood 
floor has a very smooth, low friction surface, but it is unflexible, firmly letting the robot stand 

on it. Lastly, cardboard combines the attributes of both grounds; high friction where the legs 

find a decent grip and a stiff, non-yielding surface. 
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Figure 26 – Three floor textures used for testing the resulting movements on 
different surfaces – cushion (left), hardwood (middle), and cardboard (right). 

Two algorithms shall be tested on all three surfaces to determine their efficiency. The first 
will be the natural walking algorithm, the tripod gait – secondly, the generated algorithm re-

sembles the beforementioned command file. 

The experiment for each setup is the same. Inbetween the setups, one needs to reset the 
robot by unplugging all servo motors and loading the neutral position on the driver board. 

Then, one replugs the servos and places the robot on a start position of the corresponding 

surface. Lastly, the video recording takes place – PlattformIO uploads the code to the robot, 
which executes the predefined commands.  

6.3 Results 

The reader can examine the experiments' results in the appendix robot. The folder has six 
different videos – three videos per algorithm and two videos per ground surface.  

The natural algorithm performs well on the cushion and the cardboard, as in appendix ro-

bot/natural_on_cushion and robot/natural_on_cardboard. It can use the quick, precise 
movements of three legs at a time to push itself forward and make leaps, adjusting the legs 

in between. Appendix robot/natural_on_hardwood shows a different story; the robot’s legs 

fail to grasp the slippery hardwood. The movement seems too fast, and the polymer legs slide 

front to back on the wood surface. 

Now, for the generated algorithm. Appendix simulation/300M_commands_vid shows that 

the simulation does not move symmetrically. Instead, the 3D model turns slightly to its right 

and uses its right middle and rear leg to gain momentum while the legs on the left side stabi-

lize the whole body. As a result, the movements do not transition well to the real world. 
Appendix robot/generated_on_hardwood shows a similar behavior: the robot does not move 

from the spot because the movements are too hectic and the ground is too plain. 

On the other hand, appendix robot/generated_on_cushion shows movement to the side, but 
the legs struggle with the cushion – both middle and back right legs form a scrape in the 
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ground since they are so close to each other the whole time, digging the robot a hole. Lastly, 

in the appendix robot/generated_on_cardboard, the robot moves far but backward.  

These results conclude that the transition of an efficient, generated movement algorithm to 

the real world has failed during this research project – however, it could optimize by imple-

menting methods described in 7 Conclusion. The ML-generated algorithm works splendidly 

inside the simulation; in the real world, it performed poorly because of the deviating condi-
tions. Nevertheless, the following paragraphs shall briefly analyze the generated values and 

compare them to the movement values inspired by an actual insect [40].  
 

left_front left_middle left_back right_front right_middle right_back 
hip knee hip knee hip knee hip knee hip knee hip knee 

120 90 60 90 120 90 120 90 60 90 120 90 
120 90 60 60 120 90 120 120 60 90 120 120 

60 90 120 60 60 90 60 120 120 90 60 120 
60 90 120 90 60 90 60 90 120 90 60 90 
60 60 120 90 60 60 60 90 120 120 60 90 

120 60 60 90 120 60 120 90 60 120 120 90 

Table 1 – Colorized G-Code of movement algorithm of the tripod gait.  

As the table above shows, each leg has a reoccurring pattern. Knee joints move upwards and 
back to the center, while hip joints go back and forth. Keep in mind that the servo motors on 

the left side have an inverted axis compared to the right side. This repeating pattern leads to 

the precise movement in the appendix robot/natural_on_cardboard. 
 

left_front left_middle left_back right_front right_middle right_back 
hip knee hip knee hip knee hip knee hip knee hip knee 

48 45 61 82 134 79 115 64 118 125 124 120 
106 91 105 55 74 80 47 53 130 47 133 56 

66 90 132 113 134 72 128 121 133 127 120 94 
91 83 107 45 53 83 46 125 132 45 130 50 
55 77 132 107 130 71 123 132 133 128 119 94 

109 57 93 48 76 72 60 113 132 50 127 58 
65 82 130 111 134 72 123 81 132 130 124 92 
97 79 62 45 63 80 80 53 131 46 124 63 

Table 2 – Colorized G-Code of movement algorithm generated by the ML model. 

The generated algorithm turns out to be much more chaotic, as Table 2 shows. However, 

there are repeating patterns, indicating locomotion behavior – but instead of repeating in 

blocks of three like in Table 1, all joints seem to have adopted an individual pattern. For ex-
ample, the front left hip has a reoccurring movement of four angles; low-high-low-center. On 

the right side, the middle and back hips take a passive approach, pointing straight for the 

most part and using their corresponding knees to kick the simulation forward using a high-

low repetition. This pattern moves the simulation forward quickly and efficiently, as shown in 

appendix simulation/300M_command_vid. At the same time, it performs weakly in the real 

world, as seen in appendix robot/generated_cardboard, and in no way like insects in nature. 

These results close this student research project. The last chapter summarizes the learnings 

from the previous year of research and gives a brief outlook for the future. 
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7 Conclusion 
Before jumping into the evaluation, this chapter wants to appreciate that the project com-

pleted the proposal in section 2.5 Architecture. This work spawned a 3D model resembling 

Adeept’s robot. Using the Unity ML toolkit, the simulation learned how to navigate along a 

straight path using six actuators efficiently. The command interface includes an output for 
Unity to generate the command file and an input for the robot to perform these movements 

in the real world. However, it was good that all four main topics in this research project were 

separated because delays at any stage did not significantly cause the other stages to suffer in 
quality. All the topics were developed in parallel, without too many cross-dependencies dur-

ing this year of research. This approach saved precious time and resources. 

Nevertheless, the most problematic issue in this project was the deviating conditions be-
tween simulation and reality. After weeks of training and tweaking the parameters, the ML 

model became highly efficient in walking. The research proved that a simple reward function 

of a single parameter is enough to generate complex movement. With more computing 
power and shorter training times, the project might have explored fine-tuning the variables 

to enhance the training. However, considering the tight timeframe, focusing on the simple 

reward function could have saved time in other areas. 
Furthermore, the ML model’s efficiency did not transition to the robot. The project’s 
timeframe was too tight to investigate possibilities of tweaking the physics model to resemble 

the reality more closely. Another issue the project experienced lies in Unity’s representation 
of physics. The floaty 3D simulation did not accurately represent the real world; even after 

tweaking the gravity parameters, it abuses Unity’s physics engine to glide over the plane. 
Including the robot’s behavior into the training’s feedback loop also turns out to be essential. 

It makes sense that the robot performs inadequately because not only do the physics differ, 

but the machine learning’s most significant advantage – basing decisions on observations – is 

entirely lacking from the robot. ASTERISK does not have the sensors (e.g., positional feedback 

from servos, inertial measurements from gyroscope and accelerometer) or a powerful driver 

board to handle an actual machine learning model. Furthermore, the command file the sys-

tem sends to the robot is static and does not react to the current environment. So, to harness 

the full potential of RL in the real world, one would need to create the conditions to allow for 

the RL feedback loop Figure 3 shows. Therefore, if someone attempts something similar, this 

work’s author recommends focusing on bridging the gap between simulation and reality.
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